Згідно з квантовою механікою енергія всіх видів руху в молекулі може набувати тільки певних значень, тобто вона квантується. У першому наближенні окремі види молекулярних рухів – рух електронів



Дата конвертації27.12.2016
Розмір445 b.



Згідно з квантовою механікою енергія всіх видів руху в молекулі може набувати тільки певних значень, тобто вона квантується. У першому наближенні окремі види молекулярних рухів – рух електронів, коливання ядер та обертання молекули – можна вважати незалежними одне від одного.

  • Згідно з квантовою механікою енергія всіх видів руху в молекулі може набувати тільки певних значень, тобто вона квантується. У першому наближенні окремі види молекулярних рухів – рух електронів, коливання ядер та обертання молекули – можна вважати незалежними одне від одного.



Тоді повна енергія молекули є сумою квантованих значень енергії трьох видів її руху

  • Тоді повна енергія молекули є сумою квантованих значень енергії трьох видів її руху





Електронна енергіяце енергія, обумовлена електронною конфігурацією. Вона має мінімум при певному значенні (крива 1 на рис.1). Зміна електронної конфігурації молекули призводить до зміни кривої залежності електронної енергії від відстані між ядрами . Асимптотичне значення енергії також стає іншим – воно дорівнює сумарній енергії ізольованих атомів в новому квантовому стані (крива 2 на рис.1).

  • Електронна енергіяце енергія, обумовлена електронною конфігурацією. Вона має мінімум при певному значенні (крива 1 на рис.1). Зміна електронної конфігурації молекули призводить до зміни кривої залежності електронної енергії від відстані між ядрами . Асимптотичне значення енергії також стає іншим – воно дорівнює сумарній енергії ізольованих атомів в новому квантовому стані (крива 2 на рис.1).



Правила добору – це правила, які визначають можливі квантові переходи для атомів, молекул, атомних ядер, елементарних частинок, що взаємодіють та т.і.

  • Правила добору – це правила, які визначають можливі квантові переходи для атомів, молекул, атомних ядер, елементарних частинок, що взаємодіють та т.і.

  • Оптичні правила добору визначають, які квантові переходи є дозволеними (вірогідність переходу є значною) і які заборонені строго (вірогідність переходу дорівнює нулю) або наближено (вірогідність переходу – мала). Під час характеристики станів системи за допомогою квантових чисел оптичні правила добору визначають можливі зміни цих чисел при переході певного типу.



Коливання ядер у молекулі описують за допомогою моделі квантового гармонічного осцилятора. Енергія такого осцилятора дозволяє визначити коливальну енергію молекули для невеликих значень коливального числа та визначається співвідношенням

  • Коливання ядер у молекулі описують за допомогою моделі квантового гармонічного осцилятора. Енергія такого осцилятора дозволяє визначити коливальну енергію молекули для невеликих значень коливального числа та визначається співвідношенням



Розглянемо обертання молекули. Енергія системи, яка має момент інерції I та обертається з кутовою швидкістю дорівнює:

  • Розглянемо обертання молекули. Енергія системи, яка має момент інерції I та обертається з кутовою швидкістю дорівнює:



Таким чином, обертальна енергія молекули може набувати лише дискретних значень:

  • Таким чином, обертальна енергія молекули може набувати лише дискретних значень:



Експерименти і розрахунки показують, що відстані між обертальними рівнями значно менші за відстань між коливальними рівнями , тобто

  • Таким чином, схема енергетичних рівнів двохатомної молекули має вигляд як на рисунку

  • Різні типи молекулярних спектрів відповідають різним типам переходів між рівнями енергії молекул, тобто



На відміну від лінійчастих спектрів атомів молекулярні спектри складаються із смуг, тобто є смугастими. У випадку застосування приладів з високим розрізненням виявляється, що ці смуги містять велику кількість тісно розташованих ліній. Залежно від того, зміна яких видів енергії молекули (електронної, коливальної чи обертальної) обумовлює випромінювання фотону, розрізняють три види смуг:

  • На відміну від лінійчастих спектрів атомів молекулярні спектри складаються із смуг, тобто є смугастими. У випадку застосування приладів з високим розрізненням виявляється, що ці смуги містять велику кількість тісно розташованих ліній. Залежно від того, зміна яких видів енергії молекули (електронної, коливальної чи обертальної) обумовлює випромінювання фотону, розрізняють три види смуг:

  • 1) обертальні;

  • 2) коливально – обертальні;

  • 3) електронно – коливальні.





З правила добору для дозволених переходів





На рисунку наведено схему виникнення коливально - обертальної смуги

  • На рисунку наведено схему виникнення коливально - обертальної смуги



У випадку, коли під час переходу змінюється і коливальний і обертальний стан молекули, енергія випромінюваного фотону складе:



У молекул є велика кількість збуджених електронних рівнів, переходи між якими супроводжуються зміною коливальної та обертальної енергії. Внаслідок цього структура електронних спектрів молекул істотно ускладнюється. Електронний спектр являє собою серію коливальних смуг, кожна з яких містить десятки або сотні обертальних ліній. Як правило, в молекулярних спектрах спостерігається кілька електронних переходів в близькій інфрачервоній, видимій та ультрафіолетовій областях. Наприклад, в спектрі молекули йоду (J2) є біля 30 електронних переходів.

  • У молекул є велика кількість збуджених електронних рівнів, переходи між якими супроводжуються зміною коливальної та обертальної енергії. Внаслідок цього структура електронних спектрів молекул істотно ускладнюється. Електронний спектр являє собою серію коливальних смуг, кожна з яких містить десятки або сотні обертальних ліній. Як правило, в молекулярних спектрах спостерігається кілька електронних переходів в близькій інфрачервоній, видимій та ультрафіолетовій областях. Наприклад, в спектрі молекули йоду (J2) є біля 30 електронних переходів.



Електронно - коливальний спектр молекули в близькій ультрафіолетовій області

    • Електронно - коливальний спектр молекули в близькій ультрафіолетовій області


Методи молекулярної спектроскопії, які вивчають молекулярні спектри, дозволяють вирішувати різно-манітні завдання хімії, біології й ін. наук (наприклад, визначати сполуки нафтопродуктів, полімерних речо-вин і т.і.). У хімії за молекулярними спектрами вив-чають структуру молекул. Електронні молекулярні спектри дають можливість одержувати інформацію про електронні оболонки молекул. Дослідження колива-льних молекулярних спектрів дозволяє знаходити характеристичні частоти коливань, що відповідають певним типам хімічних зв'язків у молекулі, різних груп атомів, визначати просторову структуру молекул. Дослідження обертальних молекулярних спектрів, а також обертальної структури електронних і коливаль-них спектрів дозволяє за знайденими з досліду значен-нями моментів інерції молекул знаходити з великою точністю параметри рівноважної конфігурації молекули — довжини зв'язків і валентні кути.

  • Методи молекулярної спектроскопії, які вивчають молекулярні спектри, дозволяють вирішувати різно-манітні завдання хімії, біології й ін. наук (наприклад, визначати сполуки нафтопродуктів, полімерних речо-вин і т.і.). У хімії за молекулярними спектрами вив-чають структуру молекул. Електронні молекулярні спектри дають можливість одержувати інформацію про електронні оболонки молекул. Дослідження колива-льних молекулярних спектрів дозволяє знаходити характеристичні частоти коливань, що відповідають певним типам хімічних зв'язків у молекулі, різних груп атомів, визначати просторову структуру молекул. Дослідження обертальних молекулярних спектрів, а також обертальної структури електронних і коливаль-них спектрів дозволяє за знайденими з досліду значен-нями моментів інерції молекул знаходити з великою точністю параметри рівноважної конфігурації молекули — довжини зв'язків і валентні кути.



Рентгенівське випромінювання - це електромагнітне іонізуюче випромінювання, яке займає спектральну область між гам-ма і ультрафіолетовим вип-ромінюванням у межах довжин хвиль від 10-5 нм до 100 нм. Рентгенівські промені з довжи-ною хвилі <0,2 нм умовно нази-ваються жорсткими, з довжи-ною хвилі >0,2 нм - м'якими рентгенівськими променями. Найпоширенішим джерелом рентгенівських променів є рентгенівська трубка. Природ-ними джерелами рентгенівсь-ких променів є Сонце та інші космічні об'єкти.

  • Рентгенівське випромінювання - це електромагнітне іонізуюче випромінювання, яке займає спектральну область між гам-ма і ультрафіолетовим вип-ромінюванням у межах довжин хвиль від 10-5 нм до 100 нм. Рентгенівські промені з довжи-ною хвилі <0,2 нм умовно нази-ваються жорсткими, з довжи-ною хвилі >0,2 нм - м'якими рентгенівськими променями. Найпоширенішим джерелом рентгенівських променів є рентгенівська трубка. Природ-ними джерелами рентгенівсь-ких променів є Сонце та інші космічні об'єкти.



Рентгенівські промені було відкрито в 1895 р. Рентгеном і названі ним Х- променями (цей термін застосовується в багатьох країнах). Протягом 1895—97 Рентген досліджував властивості рентгенівського випромінювання і створив перші рентгенівські трубки. Він виявив, що жорсткі рентгенівські промені проникають через різні матеріали та м'які тканини людського тіла (ця властивість рентгенівських променів швидко знайшла застосування в медицині). Відкриття рентгенівських променів привернуло увагу вчених усього світу, і вже в 1896 було опубліковано понад 1000 робіт з досліджень і застосувань рентгенівських променів.







Гальмівне випромінювання



Характеристичне випромінювання



Схема виникнення характеристичних рентгенівських спектрів K-, L-, M-,…електронні оболонки

  • Закон Мозлі - це закон, що зв'язує частоту спектральних ліній характеристичного рентгенівського випромінювання хімічного елемента з його порядковим номером. Експериментально встановлений Мозлі в 1913.

  • Закон Мозлі: корінь квадратний із частоти спектральної лінії характеристичного випромінювання елемента є лінійною функцією його порядкового номера Z:



Закон Мозлі

  • Згідно з цим законом, частоти лінії можна визначити з формул



МОЗЛІ, ГЕНРІ ГВІН ДЖЕФРІС

  • Англійський фізик. Навчався в Ітоні та Трініті - коледжі Оксфордського університету. У 1910 –1914 працював у лабораторії Резерфорда в Манчестерському, а потім в Оксфордському університетах. У 1913 встановив залежність між частотою спектральних ліній характеристичного рентгенівського випромінювання та атомним номером елемента.





Слово "лазер" складене з початкових букв в англійському словосполученні Light Amplification by Stimulated Emission of Radiation, що українською означає: посилення світла за допомогою змушеного випромінювання. Коротка історія створення лазера:

  • Слово "лазер" складене з початкових букв в англійському словосполученні Light Amplification by Stimulated Emission of Radiation, що українською означає: посилення світла за допомогою змушеного випромінювання. Коротка історія створення лазера:

  • 1917 р.- Ейнштейн вводить поняття “змушене випромінювання”

  • 1939 р. – Фабрикант вказав на можливість використання змушеного випромінювання для підсилення електромагнітного випромінювання при його проходженні через речовину.

  • 1952 р. - радянські фізики Басов і Прохоров (Таунс – США) зробили висновок про принципову можливість створення підсилювача випромінювання у СВЧ діапазоні.

  • 1960 р. - Т. Мейман створив перший у світі рубіновий лазер



Мейман Теодор



Академік БАСОВ

  • Басов Микола Геннадійович – відомий радянський фізик віце – голова виконавчої ради Всесвітньої федерації наукових робітників, лауреат Нобелівської премії з фізики (разом с Прохоровим та Таунсом) за розробку принципу дії лазера і мазера.



Академік Прохоров



Чарлз Таунс









Як довів Ейнштейн у стані термодинамічної рівноваги вірогідності поглинання і змушеного випромінювання однакові.

  • Як довів Ейнштейн у стані термодинамічної рівноваги вірогідності поглинання і змушеного випромінювання однакові.

  • Однак середовище може перебувати в нерівноважному стані, у якому реалізується інверсна населеність рівнів, тобто.





1 – активне середовище;

  • 1 – активне середовище;

  • 2 – система накачування;

  • 3 – випромінювання;

  • 4 - резонатор





Рубіновий лазер







1) Висока ступінь монохроматичності.

  • 1) Висока ступінь монохроматичності.

  • На практиці в спеціальних умовах вдається добитися, щоб відносна ширина спектральної лінії лазерного випромінювання в 107 - 108 разів була меншою за ширину найвужчих ліній спонтанного випромінювання, які спостерігаються в природі.

  • 2) Когерентність.

  • 3) Вузька спрямованість.

  • В лазері вдається одержати розбіжність променя меншою 10-4 радіани, тобто на рівні кутових секунд.

  • 4) Висока густина потужності.






База даних захищена авторським правом ©pres.in.ua 2016
звернутися до адміністрації

    Головна сторінка